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Abstract

Much political science research involves analysis of a dependent variable that has boundary

restrictions. In econometric textbooks, these studies should apply the truncated regres-

sion model, otherwise the OLS estimate is likely to generate out-of-bounds predicted values.

However, political scientists seldom use truncated regression and are unaware of this method-

ological problem. In this article, the author investigates this issue and finds that both the

OLS and truncated regression models suffer from boundary violations. To resolve this prob-

lem, the author proposes a revised truncated regression model with constrained optimization

and successfully eliminates boundary violations. Simulation results found via various set-

tings confirm the superiority of the revised model. Further analysis indicates that hypothesis

testing results are quite sensitive if different models are applied. This finding significantly

challenges the appropriateness of the current model. Through a replication study, the au-

thor demonstrates how the revised model can be applied to political studies and why it is

preferable to OLS and the current truncated regression model.

Keywords: Truncated Normal Distribution; Truncated Regression Model; Constraint Op-

timization; Sequential Quadratic Programming; Boundary Violations



1. INTRODUCTION

Much political science research involves analysis of a dependent variable that has boundary

restrictions. In electoral studies, vote share and voter turnout (aggregate-level) have a per-

centage measure and are naturally bounded between 0 and 1. (Geys, 2006; Holbrook and

McClurg, 2005) In public opinion studies, the presidential approval rating is another per-

centage variable of the same nature. (Kernell, 1978; West, 1991) In public policy, learning

achievement measured with standardized test scores like the SAT or achievement measures

like grade point average are constrained by a bounded point scale. (Berger and Toma, 1994;

Henry and Rubenstein, 2002) In world politics, the polity score that measures the level of

democracy ranges from −10 to 10. (Knack, 2004; Rudra, 2005) Examples like these abound,

and these dependent variables are all distributed within a certain boundary. In economet-

ric textbooks, the truncated regression model (hereafter the TRM model) would be a more

appropriate regression method to apply.1 (Greene, 2008, 863-869)

The TRM model has been developed over more than three decades.2 It can be easily

1The truncated regression model is usually applied when the dependent variable has boundary restrictions.
(Amemiya, 1973, 1984) The boundary restrictions can be singly bounded at a lower or upper limit, or doubly
bounded within an interval. (Johnson et al., 1970) When such truncation reflects the essential feature of the
distributional assumption, the truncated regression model differs from the censored regression, such as the
Tobit model (Tobin, 1958), in two aspects. First, truncated regression does not allow any observation outside
the boundary, including dependent and independent variables. Censored regression, on the other hand, does
have observations outside the boundary, but the values of the dependent variable are all collapsed into
the boundary values. (Greene, 2008, 869) Second, given the different nature of truncation, the probability
density function is also different for the two models. For truncated regression, the pdf function is simply the
untruncated normal density divided by a probability measure from the lower to upper limits. For censored
regression, the pdf function is a mixture of discrete and continuous distributions in which the former captures
the censoring mechanism, and the latter remains as the same as the uncensored case. (Breen, 1996, 4)

2We can further distinguish the TRM model from the censored regression and the Heckmen model in
terms of a data generating process. For truncated regression, it only needs a distributional assumption, but
censored regression contains a distributional assumption and a censoring mechanism. The same distinction
can be made about the sample-selected model, such as the Heckman model (Heckman, 1979), in which the
data is only available when the criterion of another variable is satisfied. (Sigelman and Zeng, 1999, 177).
While observed values of the dependent variable in the three models are all distributed as truncated normal,
the censored and sample-selected models have different working assumptions for the dependent variable. The
censored model assumes an underlying untrucated normal distribution, plus the censoring mechanism that
confines the dependent variable within a certain range. Similarly, the Heckman model assumes a bivariate
normal distribution of the error terms for the selection and outcome regressions with a correlation coefficient.
(Sartori, 2003, 114) The empirical truncation of the outcome dependent variable depends on the selection
mechanism that is specified in the Heckman model. Apparently, the censored and sample-selected models do
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executed with statistical software, such as Stata (with the command truncreg). Previous lit-

erature shows that the TRM model has been applied in many disciplines, such as economics,

astronomy, and biology (Jewell and Wu, 1988), but its application in the field of political

science has been limited. Why do political scientists seldom use this method? What is the

cost of not applying this method when the dependent variable is distributed as truncated

normal?

As with the use of the logit or probit model for a binary dependent variable, the fun-

damental reason to use the TRM model is to avoid boundary violations. Given that the

distributional assumption has already determined an admissible region of the dependent

variable, any solution that generates an out-of-bounds predicted value is ineligible and re-

garded as a failed estimate. While this problem is common for the binary dependent variable

(Aldrich and Nelson, 1984), little attention is paid to the TRM model. If the widespread

belief in political science is that the logit or probit model should be applied to a binary de-

pendent variable, the same conclusion should be made about the TRM model for a truncated

normal dependent variable.

While we may never know why political scientists seldom use the TRM model,3 a pos-

sible reason stems from the fact that, unlike the logit or probit model, TRM cannot solve

the problem of boundary violations. (Orme and Ruud, 2002, 213) Empirical applications

show that “The truncated normal model routinely defied convergence and, as often as not,

produced nonsense estimates.” (Greene, 1999, 158, n60) To validate this concern, we investi-

gated three political science studies and found that they all suffer from boundary violations

by either the OLS or TRM model.

not directly assume the dependent variable as univariate truncated normal, and they both add an additional
assumption to the data-generating process that might not be true.

3Political scientists, on the other hand, do pay more attention to the censored regression and the sample-
selected model. Unlike these two models, the analytical purpose of the TRM model is not to recover the
information of the underlying untruncated normal distribution, nor to correct the selection bias. Rather,
the main task is to derive the best parameter estimates from the eligible parameter space. In econometrics,
many efforts have been made in the theoretical study of the maximum likelihood estimator for the TRM
model. See Olsen (1978), Orme (1989), Hausman and Wise (1977), Chung and Goldberger (1984), and
Greene (1983).
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The first case is Timothy Hellwig and David Samuels’s 2007 article, “Voting in Open

Economies: The Electoral Consequences of Globalization” in Comparative Political Studies.

We replicate Model I and II in Table 1 (p.292), which explains the incumbent party’s vote

share and find that the least predicted vote shares are −4.797% and −3.163% by OLS, and

−7.938% and −5.874% by TRM. The second case is Thomas Hansford and Brad Gomez’s

2010 article, “Estimating the Electoral Effects of Voter Turnout” in American Political Sci-

ence Review. We replicate the model in the column 2 of Table 1 (p.277) that conducts an

F-test for excluded instruments. The dependent variable is aggregate-level voter turnout

when the incumbent is Republican. The least predicted value is −8.287% by OLS, and

−24.277% by TRM. The third case is Daron Acemoglu et al.’s 2008 article, “Income and

Democracy” in American Economic Review. We replicate the pooled and fixed-effects OLS

that explain the level of democracy in Table 2 (p.816). The dependent variable is a nor-

malized Freedom House measure of democracy, ranging from 0 to 1. The least and greatest

predicted values for the pooled model are −0.031 and 1.065 by OLS and −0.103 and 1.202

by TRM. For the fixed-effects model, the least and greatest predicted values are −0.052 and

1.077 by OLS, and −0.147 and 4.488 by TRM.

None of the three articles explains why the TRM model is not used, nor explains how

to interpret the out-of-bounds predicted values. This scenario indicates that the current

version of the TRM model is not widely perceived as the default method among political

scientists. Moreover, if the TRM model were used, the problem of boundary violations would

have been more significant considering the replication results. Therefore, even though the

application of the OLS model is clearly at odds with the distributional assumption, most

political scientists are not aware of this methodological problem. And thus far, there is no

solution in the field to simultaneously resolve the violations of the distributional assumption

and boundary restrictions.

In this article, the author proposes a revised TRM model (hereafter the TRMCO model)

within the framework of nonlinear programming and demonstrates how to improve the cur-
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rent model by eliminating boundary violations. By specifying proper boundary restrictions,

the estimation of the TRMCO model will be transformed into a constrained optimization

problem (COP). (Bertsekas, 1996) While the ideas involved in solving a COP problem are

not dramatically different from those that solve an unconstrained optimization problem, few

techniques in numerical analysis are applied to the statistical methods familiar to political

scientists.4 In the following sections, the author first explains the problem of boundary vi-

olations in the TRM model. Next, the author presents a modified procedure of maximum

likelihood estimation with the sequential quadratic programming (SQP) algorithm (Nocedal

and Wright, 1999, 529) that solves constrained optimization problems. Third, the author

compares the inferential validity of the modified model with the current one through three

simulation tests. Finally, an empirical case is presented to illustrate the remarkable difference

when the TRMCO model is applied.

2. BOUNDARY VIOLATIONS IN THE TRUNCATED REGRESSION MODEL

The TRM model can be described with the following specifications. Suppose we have n i.i.d.

observations of yi, which follows the truncated normal distribution TN (µi, σ
2; a, b), where µi,

σ, a, and b are location parameter, scale parameter, lower limit, and upper limit, respectively.

We add m covariates (x1, · · · , xm) in the model to explain µi for each observation i by

assuming µi = xiβ. Therefore, the likelihood function is

L ≡
n∏
i=1

 exp
(
−(yi−xiβ)

2σ2

)
∫ b
a

exp
(
−(y−xiβ)

2σ2

)
dy

.
4Previous applications of constrained optimization in political science tend to focus on the formal theory

instead of numerical analysis. See Moe (1980) and Sorokin (1994). Recently, political scientists started
working on numerical problems with constrained optimization. See Sekhon and Mebane (1998) and Mebane
and Sekhon (2011)
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Using Φ (·) to replace the cdf function of the normal distribution. We can derive the loglike-

lihood

logL = −
n∑
i=1

lnDi −
1

2σ2

n∑
i=1

(yi − xiβ)2,

where Di =
√

2πσ
[
Φ
(
b−xiβ
σ

)
− Φ

(
a−xiβ
σ

)]
. With a few manipulations, we can deduce the

gradient vector and the Hessian matrix, and apply the generalized Gauss-Newton algorithm

to derive maximum likelihood estimates of β̂ and σ̂. (Hausman and Wise, 1977, 936)

Notice that the above model does not specify any constraints on the dependent variable yi,

regression coefficient β, and scale parameter σ. However, those parameters do have certain

theoretical constraints that need to be specified. Those constraints can be categorized into

three types: (i) boundary limits of the dependent variable, (ii) admissible parameter space

of the independent variables, and (iii) constraints of the scale parameter. Type I constraints

state that the dependent variable should be bounded within the lower limit a and upper

limit b. Considering the joint set of the maximum and minimum values for the independent

variable xj (j is the variable indicator), the boundary constraints for ŷ should be

a ≤ ŷmin ≤ ŷmax ≤ b,

where

ŷmax =
m∑
j=0

(
v+j βjx

max
j + v−j βjx

min
j

)
ŷmin =

m∑
j=0

(
v+j βjx

min
j + v−j βjx

max
j

)
,

and v+j and v−j are indicator variables indicating

v+j =


1 if βj > 0

0 otherwise

, v−j =


1 if βj < 0

0 otherwise

.
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It is not uncommon for the truncated regression model to give a solution that violates

boundary constraints of the dependent variable. In such a case, there is no way to give a

meaningful interpretation, since the data-generating process forbids its occurrence. For ex-

ample, it makes no sense to predict a party will get 105% or −5% of votes given that the vote

share is bounded within 100% and 0%. Here we use the joint set of maximum or minimum

covariate values because sometimes the predicted values of all empirical observations are ad-

missible, but certain combinations of the covariate values can result in boundary violations.

For example, all empirical pairs of xji do not generate out-of-bounds prediction ŷi, but some

combinations of xmax
j and xmin

j might give an inadmissible prediction larger than b or smaller

than a.5 Unless we have a reason to rule out the possibility of their joint presence, we should

evaluate type I boundary violations by including all possible combinations of the covariate

values.6

Type II constraints are related to the regression coefficient β, which is best illustrated

by the centered model

yi = x∗
iβ,

where x∗ refers to the matrix of the independent variables xj , j = 1, . . . ,m, after being

centered at the means x̄j,

x∗ =


...

...
...

1 (x1i − x̄1) · · · (xmi − x̄m)

...
...

...

 .

The constant β̂0 now represents the mean estimate of yi when none of the covariates

has explanatory power, or represents the baseline predicted value of yi when all covariates

5Imagine our model predicts that IQ score and study hour are both positively related to SAT score, but
the data does not have a case in which both variables have the maximum value. Such a case is very likely
to exist, and our model should not generate an out-of-bounds predicted value on SAT score.

6When a set of covariates is composed of regional dummy variables, the joint presence is impossible,
and therefore, only the maximum and minimum coefficients of those dummies are specified in the boundary
constraints of yi.
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Figure 1: Boundary Constraints of βm

are held by the means. Apparently, the boundary constraints of β̂0 should be within the

truncation interval

a ≤ β̂0 ≤ b.

To discover the possible range of other β̂m, we first hold x∗m at the mean level x̄∗m as Figure 1

shows, and then derive the maximum and minimum of the predicted values, ŷmax
∼m and ŷmin

∼m,

respectively. The notation “∼m” represents the fact that x∗m has no contribution when it is

held at the mean. More precisely, ŷmax
∼m and ŷmin

∼m can be specified

ŷmax
∼m =

∑
j=0,j 6=m

(
v+j β̂jx

∗max
j + v−j β̂jx

∗min
j

)
ŷmin
∼m =

∑
j=0,j 6=m

(
v+j β̂jx

∗min
j + v−j β̂jx

∗max
j

)
.

The upper limit of βm is the flatter positive slope of the line L1 or L2. The lower limit is the

flatter negative slope of the line L3 or L4. Therefore, the boundary constraints of β̂m can be
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identified as

max

(
a− ŷmin

∼m
x∗max
m

,− ŷ
max
∼m − b
x∗min
m

)
≤ β̂m ≤ min

(
b− ŷmax

∼m
x∗max
m

,− ŷ
min
∼m − a
x∗min
m

)
.

If β̂m takes the steeper slope, such as L5 or L6 shows, it would generate an out-of-bounds

predicted value when we vary x∗m from the mean to the maximum or minimum, holding other

variables at the baseline level. In this sense, a type II violation can always be translated into

a type I violation.

Different centering methods do not generate different estimates of the beta coefficients,

except the constant, which is a linear combination of all other beta coefficients and the

centered covariate values.7 For a truncated regression model with m covariates, there will

always be (2m+ 2) type II boundary constraints, including the constant.

Type III boundary constraints are about the scale parameter σ. While often the con-

straints are not effective, we can consider adopting the full truncation range as the upper

limit and an arbitrary small positive number (κ) as the lower limit8

κ ≤ σ̂ ≤ b− a.

If σ approaches infinity, yi will approach the uniform distribution. When the optimization

result gives an upper boundary value of σ̂, it signifies a violation of the distribution assump-

tion and means that yi does not fit the truncated normal assumption well. For the lower

limit constraint, if σ approaches zero or becomes negative, this indicates a negative variance

resulting from the non-positive definite Hessian. Many possible explanations can account for

this problem, but its occurrence is usually associated with an ill-specified model, and thus

regarded as a failed estimate.

In this article, we separate the OLS out-of-bounds violation from the type I violation.

7This rule only applies to a strict linear model. If truncated regression is specified with a nonlinear
relationship, such as interaction, different centering methods will generate different results.

8We set κ = 0.001 in this paper.
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The former happens when the OLS estimate generates an inadmissible predicted value to an

empirical observation; the latter is identified when any possible predicted value falls outside

the boundary. Apparently, a type I violation is defined with a more rigid standard, and it

encompasses the OLS out-of-bounds violation.

3. PARAMETER ESTIMATION WITH CONSTRAINED OPTIMIZATION

The maximum likelihood estimate of the truncated regression model is a nonlinear con-

strained minimization optimization:9

Minimize − logL (β, σ|x∗, yi)

Subject to g1 = β0 + ŷmax
∼0 − b ≤ 0 (1)

g2 = a− β0 − ŷmin
∼0 ≤ 0

g3 = β0 − b ≤ 0

g4 = −β0 + a ≤ 0

...

g2m+3 = βm −min

(
b− ŷmax

∼m
x∗max
m

,− ŷ
min
∼m − a
x∗min
m

)
≤ 0

g2m+4 = −βm + max

(
a− ŷmin

∼m
x∗max
m

,− ŷ
max
∼m − b
x∗min
m

)
≤ 0

g2m+5 = σ − b+ a ≤ 0

g2m+6 = −σ + κ ≤ 0.

9In this section, we adopt the centered model for the truncated regression. The covariate matrix is noted
with an asterisk as x∗.
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We can specify this problem in matrix terms:

γ =

β
σ

 , cI (γ) =


g1
...

g2m+6

 , (PI)


minf (γ)

cI (γ) ≤ 0

γ ∈ Ω

,

where γ refers to the parameter vector being estimated, cI (γ) is the vector of inequality

constraints, Ω is the feasible parameter space, and PI represents the general minimization

problem with only inequality constraints. The subscript I represents inequality constraints

hereafter.

To solve the PI , we first add Lagrange multipliers to incorporate the inequality constraints

and modify the objective function into the Lagrangian

l (γ;λ) = f (γ) + λT c (γ) .

If optimality is achieved, a solution should exist for γ∗ and λ∗ and satisfy the KKT (Karush-

Kuhn-Tucker) conditions. (Kuhn and Tucker, 1951)

(KKT )



(a)∇f (γ∗) + A(γ∗)Tλ∗ = 0 (Stationarity)

(b) cI (γ∗) ≤ 0 (Primal feasibility)

(c) (λ∗)I ≥ 0 (Dual feasibility)

(d) (λ∗)I
T cI (γ∗) = 0 (Complementary slackness),

(2)

where ∇f (γ∗) = ∂l (γ;λ)/∂γ , A (γ) = ∂cI (γ)/∂γ .

By linearizing (2)10 and replacing ∗ with k, we can derive a modified system of KKT

10For any function F (x) = 0, the Newton method generates a sequence of {xk}, where xk+1 = xk + dk, to
find x∗ so that F (x∗) = 0. In each iteration, dk can be derived through the linearization of F (x), in which
F (xk) + F ′ (xk) dk = 0.
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conditions. (Bonnans et al., 2006, 257)



Lkd+Ak
TλQP = −∇fk

(ck +Akd)I = 0(
λQP

)
I
≥ 0(

λQP
)
I

T
(ck +Akd)I = 0,

(3)

where the KKT conditions are satisfied at the kth iteration, λQP := λk + µ, and Lk ={
∂2l (γ;λ) /∂γ∂γT

}
k
.

The step parameter d is the updated estimate for γ at the kth iteration in the numerical

analysis of PI . The Lagrange multiplier λQP is the estimate of λ + µ at the kth iteration.

The modified system (3) is, in fact, the optimality system of the osculating quadratic problem

(QP). (Bonnans et al., 2006, 218)


mind∇f(γk)Td+ 1

2
dTLkd

cI (γk) + AI (γk)d ≤ 0

(4)

The method described above is the sequential quadratic programming (SQP) algorithm

by which we break down a nonlinear constrained optimization problem into a series of os-

culating quadratic problems. The sequence of the solutions
(
γk,λ

QP
)

comes from solving

dk in (4) and λQP in (3) at each iteration, and it will approximate the optimal solution

(γ∗,λ∗) when the KKT conditions are satisfied. Since the osculating quadratic problem is

much easier to solve, the idea behind the SQP algorithm is to break down the complicated

nonlinear constrained optimization problem into a series of QP problems and gradually reach

the optimal solution.

Parameter estimation is carried out in the Matlab environment by using the built-in

quadratic programming solver, quadprog. The algorithm is described below: (Bonnans et al.,
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2006, 257)

1. Set up initial value of (γ0,λ0), and compute cI (γ0), ∇f(γ0), and AI (γ0). Set the

iteration index k = 0.

2. Stop and report
(
γk,λ

QP
)

as the optimal solution if the KKT conditions (2) are

satisfied.

3. Solve the QP problem (4) by computing the Hessian matrix of the Lagrangian L (γk,λk)

and derive dk with Matlab function quadprog.

4. Solve the Lagrange multiplier λQP by the first equation in (3),

λQP =
(
Ak

T
)−1

(−∇fk −Lkd).

5. Set the new solution of the k + 1 iteration as γk+1 = γk + dk and λk+1 = λQP .

6. Compute cI (γk+1), ∇f(γk+1), and AI (γk+1). Go back to the step 2 and set k = k+1.

We can directly compute the gradient vector ∇f(γ) and the Lagrangian Hessian matrix

L (γk,λk). The initial value is set to the parameter estimates of the truncated regression

model without boundary constraints by the Stata truncreg command.11 (Cong, 2000)

Hypothesis testing can be carried out by computing the empirical variance-covariance

matrix

V ar (γ̂) =

(
−∂

2 (lnL)

∂γ̂∂γ̂T

)−1
,

where γ̂ =
(
β̂0, β̂1, β̂2, σ̂

)T
. When the i.i.d. assumption is violated, such as with cluster

samples, the robust standard error can be generated from

V ar
(
β̂
)
robust

=

(
− 1

σ̂2

n∑
i=1

Ti∑
t=1

x∗
itx

∗
it
T

)−1 [ n∑
i=1

(
Ti∑
t=1

1

σ̂2
x∗
iteit

)(
Ti∑
t=1

1

σ̂2
eitx

∗
it
T

)]
(
− 1

σ̂2

n∑
i=1

Ti∑
t=1

x∗
itx

∗
it
T

)−1
,

11Regarding numerical issues and technical model information, please consult with the supplementary
materials.
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where T refers to a temporal or spatial unit, n is the overall sample size, and Ti is the sample

size for the ith unit. (Greene, 2008, 515)

To evaluate the sensitivity of hypothesis testing when different models are applied, the

author compares the mean absolute deviation of the four parameter estimates and their

corresponding t statistics, a measure that indicates the variability of the regression result

and the significance level of parameter estimates per trial.

4. SIMULATIONS

To understand how the TRM model performs with or without boundary constraints, three

simulation tests are carried out to evaluate the validity of parameter estimation. For each

simulation, two independent variables (x1 and x2) are included in the regression model. The

dependent variable was randomly generated as truncated normal following yi ∼ TN (µ, σ; 0, 1),

where µ ∼ U (0.05, 0.95) and σ ∼ U (min (1− µ, µ)/5 ,max (1− µ, µ)). The independent

variables are generated by varying explanatory power, degree of nonlinearity, and degree of

multicollinearity. The sampling scheme can be specified as:

Simulation I x1 = U, x2 = U · w1 + y (1− w1)

Simulation II x1 = U, x2 = U · w1 + logit(y) (1− w1)

Simulation III x1 = U · w2 + x2 (1− w2) , x2 = U · w1 + y (1− w1) ,

where U refers to a continuous uniform random variable following U (0, 1), logit(y) =

ln (y/1− y ), wi ∈ (0, 1), and the sampling process of three simulations are independent.

Except for x2 in Simulation II, xj is bounded within (0, 1).12

For the first simulation, the linear relationship between x2 and y is assumed and the

explanatory power is completely decided by w1 given the independence of x1 and y. When

12The logit transformation in the deterministic part of x2 enlarges its range from -8.66 to 13.79 in Simu-
lation II.
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w1 approaches 0, the random part of x2 is zero, and the deterministic part of x2 makes r-

squared approach 1. When w1 approaches 1, x2 is entirely composed of the random part and

r-squared approaches 0. For the second simulation, a nonlinear logistic relationship is set to

the relationship of x2 and y, while x1 is independent from y. When w1 approaches 0, x2 only

contains the deterministic part, and it causes strong ceiling and floor effects, which seriously

violate boundary restrictions when a linear regression is applied. On the other hand, when

w1 approaches 1, the floor and ceiling effects vanish, and x2 and y becomes independent. For

the third simulation, x2 is first drawn with varying degree of explanatory power (decided by

w1), and then x1 is drawn with a certain ratio (decided by w2) of the deterministic part x2

and the random part U . When w2 approaches 0, x1 is perfectly collinear with x2. When w2

approaches 1, x1 and x2 are completely independent of each other.

Regarding the numerical setups, the maximum iteration is 100, and the tolerance value

is set to 10−4. The criteria to evaluate the validity of parameter estimates are admissible so-

lution and greater loglikelihood. Admissible solution refers to the non-violation of boundary

restrictions from g1 to g2m+6, where m = 2. A greater loglikelihood value also indicates a

better solution if admissibility is satisfied. Any inadmissible solution is regarded as a failed

estimate, and the comparison of the loglikelihood value is only carried out when the TRM

and TRMCO models generate admissible estimates.

Both the TRM and TRMCO adopt the centering specification in the regression model.

The initial value for the TRMCO model is the parameter estimate of the TRM model.

According to the theory of nonlinear programming, when the TRMCO solution satisfies

the KKT conditions, it generates the best lower bound of optimality for the Lagrange dual

function given the property of weak duality. (Boyd and Vandenberghe, 2004, 225) Therefore,

the TRMCO solution could theoretically be inferior to the TRM solution, since the latter

only needs to satisfy boundary restrictions, which is only one of the four KKT conditions.

Whether the loglikelihood value is larger for the TRM or TRMCO solution is an empirical

question. When the TRMCO model reaches the maximum number of iterations, the iteration
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that generates the largest loglikelihood and satisfies the boundary restrictions is reported,

except in the first iteration.13

Table 1 presents the results of three simulation tests. The TRM model generates admissi-

ble solutions by 35.5%, 11.4%, and 30.6% in the three simulations, while the solutions of the

TRMCO model are all 100% admissible. The lower percentage of the second simulation for

the TRM model is associated with the serious boundary violation by the designed sampling

scheme. Apparently, the TRMCO model is more reliable and not subject to the problem of

nonlinearity or multicollearity.

When we consider which method performs better in parameter estimation, the TRMCO

model has a better estimate (admissible solution + greater loglikelihood) for 100% in all three

simulations. Again, this result indicates the superiority of the TRMCO model. Breaking

down the cases by the OLS out-of-bounds violation, we find that the TRM model cannot

correct boundary violations at all (0%), but the TRMCO model is capable of doing so

(100%). Regarding those cases that do not have the OLS out-of-bounds violation, the TRM

model only has admissible solutions in 53.8%, 60.6%, and 44.9% for the three simulations,

while TRMCO has no instances of boundary violations.

Another key factor in the sampling scheme is the degree of explanatory power. We break

down the cases by different r-squared measures into six categories: [0,0.1], (0.1,0.3], (0.3,0.5],

(0.5,0.7], (0.7,0.9], (0.9,1]. The result consistently shows that the TRMCO model performs

in an unconditionally superior fashion (100% admissible solution), regardless of r-squared,

nonlinearity, and multicollinearity. With regard to the TRM model, the performance quickly

worsens if r-squared is larger than 0.1. The successful rate for admissible solutions when r-

squared is smaller than 0.1 is 72.8%, 70.4%, and 58.9% for the three simulations, respectively.

It is reduced to less than 40% when r-squared is between 0.1 and 0.3 and, continues dropping

13According to the weak duality theorem, violation of the complementary slackness condition (the fourth
KKT conditions) sometimes occurs and leads to nonconvergence because of the duality gap. (Murty, 2010,
260-261) When the estimation process reaches the maximum iterations, the best eligible TRMCO estimate
is considered a reasonable result to report if the boundary restrictions are satisfied. Otherwise, the result
is marked as an ineligible solution. The same criterion is applied to the TRM estimate under the Stata
environment.
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to 20% when r-squared is between 0.3 and 0.5, and finally falls below 15% when r-squared

is above 0.5.

Regardless of the superiority of the TRMCO model, it is informative to understand the

difference in the solutions from both methods. Table 2 crosstabulates the mean absolute

deviation of the estimates (β̂0,β̂1,β̂2,σ̂) for the TRM model, by using the TRMCO solution

as the default answer. The result indicates very little difference between all parameter

estimates when the solution of the TRM model has no boundary violations. The mean

absolute deviation of the parameter estimates is at most 0.001 and is almost negligible. On

the other hand, when the TRM model fails to generate an admissible solution, the margin

of difference is significantly larger, particularly when the multicollinearity is high, except for

the scale parameter σ.

The mean absolute deviation of the t statistic can provide further information regarding

the sensibility of the hypothesis testing results. As Tables 2 shows, tβ0 , tβ2 , and tσ have

milder variability when the solution of the TRM model is admissible. However, the variability

significantly increases when the TRM model has boundary violations, regardless of different

sampling schemes. This result indicates that hypothesis testing can be greatly affected if

the TRM fails to find an admissible solution. Note that tβ1 does have little variability in

all three simulations since x1 and y in the sampling scheme are supposed to be independent

(Simulation I and II) or highly collinear to x2 (Simulation III). Given that little explanatory

power is designed to x1, the variability is marginal.

Some cases of the TRM model suffer from the problem of negative variance. All of

these cases occur in Simulation II in which the strong nonlinear logit relationship is assumed

between x2 and y. This result indicates that negative variance becomes a serious problem

for the TRM model when the boundary violation is extreme.14 As Table 2 shows, the TRM

model generates negative variance in 33.4% (296/886) of the cases when it fails to find an

admissible solution. This reflects the weakness of the TRM model in handling data for which

14When ceiling or floor effects are very strong, negative variance happens and this indicates strong violation
of the linear specification of the regression model. (Kolenikov and Bollen, 2012, 6)
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the linear assumption has been significantly violated.

Although the difference of the TRMCO and TRM models is limited when the latter

solution has no boundary violations, the weakness of handling various data properties, such

as varying explanatory power, nonlinearity, and multicollinearity, as well as the problem of

negative variance, all makes the TRM model highly unreliable. Thus, the overall findings

of the three simulation tests consistently suggest that the TRMCO model is superior to the

TRM model.

5. A REPLICATION STUDY

To demonstrate how TRMCO can be applied to political studies and what difference TRMCO

makes in the current method, the author presents a replication study of the aforementioned

2007 Hellwig and Samuels article. The reason for choosing this work for replication is

threefold. First, the dependent variable is the vote share of the incumbent party, which

perfectly fits the distributional assumption of the truncated normal distribution and is natu-

rally bounded between 0 and 1. Second, the dataset is available for public access and anyone

can replicate the analysis. Third, the original analysis adopts the OLS model without any

complication, and this makes the replication study easier.

There are two regression models in Hellwig and Samuels’s article. Both models apply

incumbent party’s vote-share as the dependent variable, and use 13 independent variables in

each regression with minor changes. The estimation is conducted with the OLS method, and

robust standard errors are reported for hypothesis testing (Stata). In Model I, the major

explanatory variables include Previous Vote (the incumbent party’s vote share in the previous

election), Economy (annual percentage change in real per capital GDP), and Trade Openness

(the sum of the country’s exports and imports as a proportion of its GDP). The control

variables are Presidential Election (a dummy variable), Re-election (a dummy variable based

on whether the incumbent president was running for re-election), Effective Number of Parties,

17



Income (thousand of constant U.S. dollars), and four regional dummy variables Africa, Asia,

Central and Eastern Europe, and Latin America and the Caribbean (using the advanced

industrial democracies as the baseline category). Two remaining variables are interaction

terms Economy×Trade Openness and Economy×Presidential Election. Model II replaces

the explanatory variable Trade Openness with Capital Flows (gross private capital flows as

a share of GDP), and thus, the interaction term Economy×Trade Openness is replaced with

Economy×Capital Flows. The rest of the model specifications remain the same. The sample

size is 426, including all democracies (+6 or better in Polity IV’s ranking of democratic

quality) in the world from 1975 to 2002.

Two adjustments are made to the TRMCO model. First, instead of centering by the

means, the author adopts a model specification that fixes all independent variables at the

minimum level for handling dummy variables.15 Centering dummy variables makes no sense

in interpretation, especially for those unbalanced dummies that could cause numerical prob-

lems in parameter estimation.16 Therefore, the constant estimate of the OLS model is differ-

ent from what was originally reported. Second, given that the truncated normal distribution

is a more plausible distributional assumption, the criteria for model comparison should be

based on the log pseudolikelihood function of the TRMCO model, as well as admissibility of

the parameter estimates.17

Due to the spatial dependence of the sample, robust standard error is applied for hy-

pothesis testing. For each model, the author compares three methods (OLS, TRM, and

TRMCO), with three criteria: first, which methods produces the greatest values of the log

pseudolikelihood function; second, whether the predicted value of vote-share is admissible;

third, whether the parameter estimate complies to the boundary constraints. Only the

15We do not fix the original interaction variables to the minimum. Instead, we fix all the non-interaction
variables at the minimum value first, and then compute the crossproducts to generate two interaction terms.

16Consider that the regional dummy variable Africa only has 5.6% of the cases in the overall sample. If it
is centered to the mean, the centered dummy only has the value of either −.056 or .944, of which the former
is very small as a denominator and would sometimes lead to numerical problems in the estimation process.

17Since the data are clustered samples and violate the i.i.d. assumption, the product of all the likelihood
function, regardless of cluster dependence, is the so-called “pseudo-likelihood” function. (Strauss and Ikeda,
1990)
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answers satisfied with the latter two criteria are eligible for log pseudolikelihood comparison.

Regarding the numerical estimation of the TRMCO model, we use TRM’s solution as

the initial value. The number of maximum iterations and the tolerance value remain the

same as 100 and 10−4. In addition, since all independent variables are fixed at minimum,

the boundary constraint for β̂m is modified correspondingly

a− ŷmin
∼m

xmax
m − xmin

m

≤ β̂m ≤
b− ŷmax

∼m
xmax
m − xmin

m

, (5)

where

ŷmax
∼m =


β̂0 +

∑
j 6=m

v+j β̂j
(
xj − xmin

j

)max
+Max (βd1, · · · , βd2) (independent vars)

β̂0 +
∑
v+j β̂j

(
xj − xmin

j

)max
(regional dummies),

ŷmin
∼m =


β̂0 +

∑
j 6=m

v−j β̂j
(
xj − xmin

j

)max
+Min (βd1, · · · , βd2) (independent vars)

β̂0 +
∑
v−j β̂j

(
xj − xmin

j

)max
(regional dummies),

(6)

in which βdj represents a dummy variable, and we drop the terms
(
xj − xmin

j

)min
since they

are all zero.18 As the appendix makes evident, we can easily prove that (5) applies to both

pure independent and interaction variables.

Table 3 shows replication results of Model I by three methods. TRMCO is significantly

different from TRM and OLS. For the TRMCO model, Economy,Trade Openness, and In-

come are no more significant, while they are positively significant in the other two models.

None of the regional dummies is significant in the TRMCO model, but the OLS and TRM

models have one and two significant results, respectively. Besides, the negative relationship

of the interaction term Economy×Trade Openness does not hold in the TRMCO model

either. Among the three methods, the OLS model has the greatest number of significant

18For the interaction term, the indicator variables v+j and v−j are not independently decided by its own beta
coefficient. Rather, they are decided by the signs of the composing variable’s beta coefficients. For instance,
if x∗7 = x∗5 × x∗6, then v+7 = 1 when sign(β5)× sign(β6) > 0 , and v−7 = 1 when sign(β5)× sign(β6) < 0 .
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results (9), larger than TRM (8) and TRMCO (4). This result indicates a great variability

of causal analysis when different methods are applied.

In terms of model performance, the TRM suffers the problem of inadmissible predicted

values ŷmin = −7.938 and 13 boundary violations. The OLS model also has an inadmissible

predicted value ŷmin = −4.797 and 13 boundary violations. The only eligible solution is

generated from the TRMCO model, which has a slightly lower log psedolikelihood value,

but the solution is admissible and no boundary violation occurs. Apparently, the TRMCO

model has the best performance among the three.

Similar findings are concluded in the replication results of Model II in Table 4. Again,

Economy is not significant in the TRMCO model, and the adjusted constant is signifi-

cantly larger than zero but not in the OLS or TRM model. For Presidential Election and

Economy×Presidential Election, the TRMCO model shows a significant negative and posi-

tive relationship, but the two findings do not appear in the OLS and TRM models. For the

rest of the parameter estimates findings, while the significance tests show the same result,

the beta estimates are somewhat different. In sum, the TRMCO model has the greatest

number of significant results (8), larger than OLS (6) and TRM (6), and apparently, the

regression results also show a great variability when different methods are applied.

The OLS and TRM models still suffer the out-of-bounds predicted values in Model II,

and they have 12 and 13 boundary violations, respectively. In contrast, the TRMCO model

does not have the above problems and performs better. Based on the above results, we can

conclude that the TRMCO model is a superior method to the current models in use. This

conclusion casts doubt on the inferential validity of the current methods, such as the OLS

or TRM model when the dependent variable fits the truncated normal assumption better.

At last, to understand what those boundary violations are about, we translate the type

II boundary violations into type I violations as Table 5 shows. The translation proceeds as

follows: First, we hold the baseline profile at the combination that generates the greatest or

least predicted value while fixing the predictor in interest at its minimum. Second, by varying
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the predictor from its minimum to maximum, we add its contribution, which results in the

greatest and least predicted value. Third, we evaluate whether the parameter estimate has

a type-II violation by checking its admissibility. As Table 5 shows, TRM has 13 boundary

violations in both models, while TRMCO’s predicted values are all admissible. Most of the

boundary violations for the TRM solution are lower-bound violations, except for Capital

Flow in Model II. This result nicely illustrates why we need to adopt the TRMCO model as

a replacement for the TRM and OLS models.

6. CONCLUSIONS

The current truncated regression model suffers significantly from boundary violations. Under

no circumstances can an ineligible solution achieve inferential validity. This article demon-

strates that this problem is widespread in the OLS and TRM models when a regression anal-

ysis is applied to a truncated normal dependent variable. To resolve this problem, the author

proposes a modified truncated regression model (TRMCO) by incorporating the techniques

of constrained optimization and successfully eliminates boundary violations and generates

admissible and interpretable results. The major contribution of this article is twofold. First,

the application of the non-linear programming method SQP successfully solves the boundary

violation problems in the parameter estimation process of maximum likelihood. Second, this

article provides simulation evidence and a replication study to demonstrate the superiority

of TRMCO over the existing model.

The findings in this article have profound implications for statistical theory as well as

empirical application. From a theoretical perspective, the plausibility of the distributional

assumption for the dependent variable is critical to inferential validity. When boundary limits

exist for a normal random variable, the failure to specify boundary constraints would lead to

an invalid statistical inference. Unlike TRMCO, the current model does not solve the problem

of boundary violations. Nor does the existing literature include relevant discussions regarding
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how boundary violations affect the validity and interpretability of the regression result. This

article proves that the boundary violations can be fixed, and hence, no compromise should

be made to accept those ineligible results.

From the empirical perspective, this article demonstrates how to work directly with a

truncated normal distribution by maximum likelihood under the framework of constrained

optimization. This involves the setup of boundary constraints with the specification of the

centered or fixed model and the application of sequential quadratic programming algorithm.

Together, those efforts engender a new regression method that is exempt from boundary

violations.

Many studies in political science analyze truncated normal dependent variables. In addi-

tion to party’s vote share, any variable that uses the percentage measure is likely subject to

boundary restrictions, such as voter turnout or politician’s approval rating. However, some

variables do have boundary restrictions, but these restrictions are largely neglected, since

the untruncated normal distribution works fairly well. These variables include test scores

and effective number of parties. Still, other variables, such as media exposure or formal

education, have implicit boundary restrictions, but researchers are often unaware of their

existence. Given the situations discussed above, it is strongly recommended that researchers

compare the results of their original model with the TRMCO model and check the robust-

ness of regression outcomes. Otherwise, inferential validity could be seriously compromised

if boundary violations actually occur.

APPENDIX

This following appendix contains three proofs of the boundary constraints for pure indepen-

dent variables, interaction variables, and dummy variables. The purpose is to illustrate that

all of the boundary constraints can be generalized by (5).
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Notation

• x†j: A column vector of the covariate matrix after being fixed at the minimum.

• β0: Baseline predicted vote share when all covariates are fixed at the minimum, except

the dummies which are all set to 0.

• β1 to β4: Beta coefficient estimates for the pure independent variables, Previous Votes,

Re-election, Effective Number of Parties, and Income, respectively.

• β5 to β9: Beta coefficient estimates associated with the interaction variables, Economy,

Trade Openness, Economy×Trade Openness, Presidential Election, and Economy×Presidential

Election, respectively.

• β10 to β13: Beta coefficient estimates for the regional dummy variables, Africa, Asia,

Central and Eastern Europe, and Latin America and the Caribbean, respectively.

Case I: Pure Independent Variables

Given the overall predicted vote share

ŷmax = β̂0 +
4∑
i=1

v+i β̂ix
†max
i +

9∑
j=5

v+j β̂jx
†max
j + max

(
β̂10, β̂11, β̂12, β̂13

)
ŷmin = β̂0 +

4∑
i=1

v−i β̂ix
†max
i +

9∑
j=5

v−j β̂jx
†max
j + min

(
β̂10, β̂11, β̂12, β̂13

)
,

we know

ŷmax
∼j = ŷmax − v+j β̂jx

†max
j

ŷmin
∼j = ŷmin − v−j β̂jx

†max
j ,

where j = {1, 2, 3, 4}.
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Since a ≤ ŷmin ≤ ŷmax ≤ b,

ymax
∼j + v+j βjx

†max
j ≤ b

ymin
∼j + v−j βjx

†max
j ≥ a

Therefore,
a− ŷmin

∼j

x†max
j

≤ βj ≤
b− ŷmax

∼j

x†max
j

.

�

Case II: Interaction Variables

To simplify the proof, we only present the upper bound constraint. The same proof

can easily be applied to the lower bound constraint. In the following proof, we first deal

with β5, beta coefficient of Economy, one of the composition variables for Economy×Trade

Openness(β7) and Economy×Presidential Election(β9).

Given

ŷmax
∼5 = ŷmax − v+5 β̂5x

†max
5 − v+7 β̂7x

†max
7 − v+9 β̂9x

†max
9 ,

we know

ŷmax − ŷmax
∼5 = v+5 β5x

†max
5 + v+7 β7x

†max
7 + v+9 β9x

†max
9 ≤ b− ŷmax

∼5 .

Therefore,

β5 ≤
b− ŷmax

∼5 − v+7 β7x
†max
7 − v+9 β9x

†max
9

x†max
5

,

and (5) can be generalized to describe this boundary constraint if we change the definition

of ŷmax
∼5 as (6) states.
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For the resultant variables, such as Economy×Trade Openness,

ŷmax
∼7 =


ŷmax − v+5 β̂5x

†max
5

− v+7 β̂7x
†max
7 − v+9 β̂9x

†max
9

if v+6 β6x
†max
6 ≥ v+5 β5x

†max
5 + v+9 β9x

†max
9

ŷmax − v+6 β̂6x
†max
6 − v+7 β̂7x

†max
7 otherwise

If v+6 β̂6x
†max
6 ≥ v+5 β̂5x

†max
5 + v+9 β̂9x

†max
9 ,

b− ŷmax
∼7 ≥ v+5 β5x

†max
5 + v+7 β7x

†max
7 + v+9 β9x

†max
9

β̂7 ≤
b− ŷmax

∼7 − v+5 β̂5x
†max
5 − v+9 β̂9x

†max
9

x†max
7

;

otherwise,

b− ŷmax
∼7 ≥ v+6 β̂6x

†max
6 + v+7 β̂7x

†max
7

β̂7 ≤
b− ŷmax

∼7 − v+6 β̂6x
†max
6

x†max
7

.

Both cases can be generalized by (5) and (6). �

Case III: Regional Dummy Variables

For a regional dummy variable x†j, where j = {10, 11, 12, 13},

ŷmax
∼10 = ŷmax −max

(
β̂10, β̂11, β̂12, β̂13

)
.

Thus, we can derive

β̂j ≤ b− ŷmax
∼10 ,

and this relationship can be generalized by (5) and (6) since x†max
∼j = 1. �
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ŷ
m
in
∼
m

)
m

ax
m

in
m

ax
m

in
m

ax
m

in
m

ax
m

in
A

ll
V

ar
ia

b
le

s
85

.9
-3

2.
9∗

79
.5

0
81

.3
-2

2.
8∗

81
.7

0
P

re
v
io

u
s

V
ot

es
85

.9
12

.2
79

.5
44

.5
81

.3
21

.1
81

.7
45

.1
E

co
n
om

y
85

.9
-7

.7
∗

79
.5

0
81

.3
-6

.3
∗

81
.7

0
T

ra
d
e

O
p

en
n
es

s(
C

ap
it

al
F

lo
w

s)
85

.9
-4

.5
∗

79
.5

0
13

5.
4∗

81
.3

81
.7

0
E

co
n
om

y
×

T
ra

d
e

O
p

en
n
es

s(
C

ap
it

al
F

lo
w

s)
85

.9
-6

6.
1∗

79
.5

0
81

.3
-1

88
.8
∗

81
.7

0
P

re
si

d
en

ti
al

E
le

ct
io

n
82

.2
-3

2.
9∗

79
.5

0
76

.7
-2

2.
8∗

69
.4

0
E

co
n
om

y
×

P
re

si
d
en

ti
al

E
le

ct
io

n
90

.4
-3

2.
9∗

79
.5

2.
6

87
.4

-2
2.

8∗
10

0
0

R
e-

el
ec

ti
on

85
.9

-2
6.

9∗
79

.5
4.

2
81

.3
-1

7.
9∗

81
.7

4.
3

E
ff

ec
ti

ve
N

u
m

b
er

of
P

ar
ti

es
53

.2
-3

2.
9∗

60
.9

0
52

.3
-2

2.
8∗

59
.7

0
In

co
m

e
85

.9
-2

4.
2∗

79
.5

5.
0

81
.3

-1
4.

6∗
81

.7
6.

9
A

fr
ic

a
85

.9
-2

6.
0∗

79
.5

4.
7

81
.3

-1
1.

7∗
81

.7
9.

4
A

si
a

85
.1

-2
6.

8∗
76

.1
1.

3
76

.4
-1

6.
6∗

76
.3

4.
0

C
en

tr
al

an
d

E
as

te
rn

E
u
ro

p
e

79
.0

-3
2.

9∗
74

.8
0

70
.3

-2
2.

8∗
72

.3
0

L
at

in
A

m
er

ic
a

an
d

th
e

C
ar

ib
b

ea
n

85
.9

-2
5.

9∗
75

.9
1.

1
77

.2
-1

5.
8∗

76
.2

3.
9

∗ b
ou

n
d

ar
y

v
io

la
ti

on

T
ab

le
5:

T
ra

n
sl

at
io

n
of

B
ou

n
d
ar

y
V

io
la

ti
on

s
in

to
P

re
d
ic

te
d

V
al

u
es

F
or

M
o
d
el

I
an

d
II

34


